
        Corresponding Author: s.a.edalatpanah@aihe.ac.ir 

        https://doi.org/10.22105/sci.v2i3.42       

Licensee System Analytics. This article is an open access article distributed under the terms and conditions of the Creative 

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0). 

 

 
 

 

 

 

 

 

1|Introduction 

The relentless tide of urbanization has brought with it a significant challenge: traffic congestion. In major 

cities worldwide, the ever-increasing number of vehicles has surpassed the capacity of existing transportation 
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Abstract 

Increasing congestion and complexity in urban transportation networks have reduced the effectiveness of static control strategies, 

highlighting the need for data-driven smart traffic management to mitigate delays, improve safety, and reduce environmental 

impacts. This paper adopts a review-and-design perspective to articulate a conceptual Smart Traffic Management System (STMS) 

that aggregates and fuses real-time, multi-source data (e.g., roadside sensors, cameras, and connectivity-based signals). The 

framework leverages computer vision to extract traffic states and detect incidents, and employs machine-learning analytics for 

forecasting and decision support, enabling adaptive signal control, incident management, and emergency-vehicle prioritization 

through an end-to-end pipeline from data ingestion and preprocessing to feature extraction, inference, and control action. The 

main contribution is a structured STMS architecture and operational workflow that clarifies the required components and decision 

pathways, and qualitatively demonstrates the system’s potential to outperform static timing by reducing queue build-up and waiting 

time, stabilizing flow, and improving responsiveness under non-recurrent events. The study is primarily conceptual and does not 

report quantitative field or simulation-based results; standard ITS performance indicators (e.g., average delay, travel time, queue 

length, throughput, emissions) and detection metrics (e.g., precision/recall/F1) are not empirically evaluated. Practical 

effectiveness is also contingent on data quality, sensor coverage, integration with legacy controllers, and security/privacy 

constraints. Integrating real-time sensing, computer vision, and machine-learning–driven decision support provides a viable 

foundation for smart-city traffic operations. Future work should prioritize pilot deployments, rigorous quantitative evaluation 

using established ITS metrics, and robust designs that address noisy data, operational constraints, and governance requirements. 
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  infrastructure. This gridlock predicament results in a cascade of negative consequences, impacting individuals, 

businesses, and the environment alike [1]. 

I. Delays and lost productivity: commuters trapped in bumper-to-bumper traffic experience significant delays, 

leading to frustration, wasted time, and reduced productivity. It has a ripple effect, impacting business 

operations, economic growth, and overall quality of life [2]. 

II. Economic costs: traffic congestion translates to economic losses. Businesses incur costs due to delayed 

deliveries and employee absenteeism caused by long commutes. Additionally, fuel consumption increases 

with stop-and-go traffic, leading to higher transportation expenses for individuals and businesses [3]. 

III. Environmental impact: the exhaust fumes from idling vehicles contribute significantly to air pollution, 

negatively impacting public health and exacerbating climate change concerns [4], [5]. 

IV. Safety concerns: congested roads create a hazardous environment, increasing the risk of accidents and injuries 

for drivers, cyclists, and pedestrians [6], [7]. 

The traditional approach of constructing new roads to accommodate the growing traffic volume is often 

impractical due to space constraints, environmental concerns, and high costs. Therefore, there is a pressing 

need for innovative solutions to manage traffic flow effectively and create a more sustainable transportation 

system. 

1.1|The Rise of Smart Cities and Intelligent Transportation Systems 

The emergence of smart city initiatives presents a promising approach to addressing urban challenges, 

including traffic congestion. Smart cities leverage technology and data analytics to improve efficiency, 

sustainability, and overall quality of life for residents. A key component of this vision is the development of 

Intelligent Transportation Systems (ITS) [8]. ITS integrates technologies such as sensors, cameras, 

communication networks, and data analytics to gather real-time traffic information. This data can be used for 

a variety of purposes, including: 

I. Dynamic traffic signal control: traditional traffic lights rely on static timing schedules, which may not adapt 

to real-time traffic variations. Smart Traffic Management Systems (STMS) use real-time data to adjust traffic 

light timing dynamically, optimizing traffic flow at intersections [9], [10]. 

II. Incident detection and response: STMS can employ video analytics to detect accidents, disabled vehicles, or 

other incidents on the road. It allows for quicker response times from emergency services, minimizing 

disruption and improving safety [11], [12]. 

III. Travel information systems: real-time traffic data can provide drivers with up-to-date information on 

congestion levels, alternative routes, and estimated travel times. It empowers drivers to make informed 

decisions and avoid congested areas, enhancing overall traffic flow [13], [14]. 
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Fig. 1. Smart city with ITS. 
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  1.2|Smart Traffic Management System 

This research delves into the design and development of an STMS as a potential solution to address traffic 

congestion and improve urban mobility. The proposed STMS leverages real-time data collection, image 

processing, and machine learning algorithms to dynamically manage traffic flow and optimize transportation 

network performance [12], [15]. 

Fig. 2. Gridlocked urban traffic. 

The following sections will explore the key components of the STMS, its implementation details, and its 

potential benefits for traffic management. We will analyze the system's performance and discuss opportunities 

for further development and integration with emerging technologies to create a smarter and more efficient 

transportation system for the future [16]. 

2|Literature Reviews 

Traffic congestion is a complex issue with numerous contributing factors. Researchers have explored various 

approaches to mitigate congestion and improve traffic flow. This chapter delves into the existing body of 

research on traffic management systems, focusing on ITS and the application of technologies like real-time 

data collection, image processing, and machine learning [17]. A cornerstone of effective traffic management 

is the ability to gather real-time data on traffic conditions. This data provides valuable insights into traffic 

patterns, congestion levels, and incident occurrences. Various technologies have been explored for real-time 

data collection: 

I. Loop detectors: these embedded road sensors detect vehicles passing over them, providing data on traffic 

volume and speed [17]. 

II. Inductive Loop Detectors (ILDs): an advancement over loop detectors, ILDs are less susceptible to 

environmental factors and can differentiate between vehicle types, such as cars, trucks, and motorcycles [18], 

[19]. 

III. Magnetic Vehicle Detection (MVD): similar to ILDs, MVD sensors utilize the magnetic field generated by 

moving vehicles for detection [20], [21]. 

IV. Microwave radar detectors: these sensors use microwave radar technology to detect vehicles and measure 

their speed over a wider range than loop detectors. 

V. Video Image Processing (VIP): traffic cameras coupled with image processing algorithms can analyze video 

feeds to extract real-time data on traffic density, vehicle classification, and incident detection [22]. 
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  VI. Bluetooth and Wi-Fi sensors: these sensors leverage existing Bluetooth and Wi-Fi signals from smartphones 

and other devices to estimate traffic volume and speed anonymously [5], [23]. 

The research by [24] examines the effectiveness of various data-collection methods for traffic management. 

They compare loop detectors, ILDs, and VIP, highlighting the advantages and limitations of each approach. 

Their findings emphasize the importance of selecting the appropriate data collection technology based on 

factors such as cost, accuracy, and the desired data points. Building upon the collected real-time data, 

researchers have explored various data analysis techniques for traffic management. The work by [25] proposes 

a framework for real-time traffic flow prediction using machine learning algorithms. This framework analyzes 

historical data alongside real-time sensor readings to predict future traffic patterns and congestion levels. Such 

predictive capabilities enable proactive traffic management, allowing dynamic adjustments to traffic light 

timing and rerouting. 

2.1|Intelligent Transportation Systems and Traffic Signal Optimization 

ITS represents a comprehensive approach to traffic management by integrating various technologies and 

communication networks. A key component of ITS is the use of adaptive traffic signal control systems. 

Traditional traffic lights operate on predetermined timing schedules, which may not reflect real-time traffic 

conditions. Adaptive traffic signal control systems use real-time data from sensors and cameras to dynamically 

adjust traffic light timing based on actual traffic flow [26]. Research by [10] examines the impact of adaptive 

traffic signal control systems on urban traffic networks. Their study demonstrates the effectiveness of these 

systems in reducing congestion, travel times, and fuel consumption. However, the authors also highlight the 

importance of optimizing system parameters and algorithms for specific traffic patterns and infrastructure 

configurations to ensure maximum effectiveness. 

2.2|Image Processing and Machine Learning for Traffic Management 

The growing field of computer vision and machine learning offers significant potential for traffic management 

applications. VIP techniques can be employed to extract valuable information from traffic camera feeds. 

Research by [27] explores the application of image processing algorithms for vehicle detection, classification, 

and tracking. It enables real-time monitoring of traffic flow, identification of vehicle types, and automatic 

incident detection (accidents and disabled vehicles). 

Furthermore, machine learning algorithms can be trained on large datasets of traffic video data to perform 

advanced analytics. This system analyzes real-time traffic video data to predict traffic patterns and congestion 

levels at intersections. Based on these predictions, the system dynamically adjusts traffic light timing to 

optimize traffic flow and minimize waiting times. 

2.3|Advanced Communication Technologies for Traffic Management 

Communication networks play a crucial role in enabling real-time data exchange between various components 

of an STMS. Research by [28] explores the potential of Vehicle-to-Everything (V2X) communication for 

traffic management. V2X technology allows vehicles to communicate with each other and with roadside 

infrastructure, providing real-time data on location, speed, and direction. It enables cooperative traffic 

management strategies, such as coordinated traffic light control and automated emergency vehicle response 

systems. 

2.4|Integration with Urban Planning and Sustainability 

Effective traffic management needs to be integrated with broader urban planning and sustainability goals. 

The research by [9] examines the role of ITS in sustainable urban development. They argue that ITS can 

contribute to achieving sustainability goals by: 
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  I. Reducing traffic congestion and emissions: as discussed earlier, improved traffic flow through dynamic 

traffic management and route optimization can significantly reduce vehicle idling time and fuel consumption, 

thereby lowering greenhouse gas emissions [29]. 

II. Promoting public transport and alternative modes of transportation: real-time information on public 

transport schedules and arrival times, provided through ITS, can encourage a shift towards more sustainable 

modes. Additionally, ITS can be integrated with bike-sharing systems and pedestrian infrastructure to 

promote active travel choices [30]. 

III. Land-use planning and development: traffic data collected through ITS can inform urban planning decisions, 

such as optimizing the location of commercial centers, residential areas, and public transport hubs to reduce 

travel distances and congestion [31]. 

3|Proposed Study 

While significant advancements have been made in developing ITS and STMS, there remain several 

knowledge gaps and areas for further research: 

I. Data fusion and advanced analytics: existing research primarily focuses on utilizing data from individual 

sensors or cameras. There is a gap in exploring advanced data fusion techniques that combine data from 

various sources (loop detectors, video cameras, weather data, social media) to create a more comprehensive 

picture of traffic conditions. Additionally, research on advanced machine learning algorithms for real-time 

traffic prediction and anomaly detection can further optimize traffic management strategies [32]. 

II. Context-aware traffic management: current STMS solutions often rely on generic algorithms. A gap exists 

in developing context-aware traffic management systems that can adapt to various factors, such as weather 

conditions, special events, and unexpected incidents. It requires incorporating real-time weather data, event 

schedules, and social media feeds into the traffic management decision-making process. 

III. Multimodal traffic management: most research focuses on managing car traffic. A gap exists in developing 

integrated traffic management systems that consider all modes of transportation, including bicycles, 

pedestrians, and public transport. It requires optimizing traffic light phasing for cyclists and pedestrians, 

integrating public transport schedules with traffic signal control, and providing real-time information on 

multimodal travel options [33]. 

IV. Human-in-the-loop systems: while automation plays a crucial role in STMS, complete reliance on 

autonomous systems may not be optimal. A gap exists in exploring human-in-the-loop systems that leverage 

human expertise to complement machine-learning algorithms for decision-making, particularly in 

emergencies or complex traffic scenarios. 

V. Cost-effective and scalable solutions: implementing a comprehensive STMS can be expensive. A gap exists 

in developing cost-effective and scalable STMS solutions that leverage low-cost sensor technologies, open-

source software platforms, and cloud computing for data storage and processing. It is crucial for wider 

adoption, particularly in developing cities with limited budgets [34]. 

VI. Public engagement and user behavior integration: successful implementation of STMS requires public 

acceptance and cooperation. There is a gap in understanding user behavior and preferences regarding data 

privacy, information sharing, and the adoption of new technologies. Public engagement strategies and user-

centric design approaches are crucial for promoting trust and encouraging positive behavior changes [35]. 

VII. Evaluation frameworks and long-term impacts: while research has explored the potential benefits of STMS, 

robust evaluation frameworks are needed to assess their long-term effectiveness on traffic flow, safety, 

environment, and economic outcomes. Furthermore, research is needed on the broader societal and 

economic impacts of STMS, including potential job displacement and the need for workforce retraining in 

the transportation sector. 
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4|Future Work 

I. Future research on STMS should advance from conceptual models to practical, large-scale implementations 

that can operate under real-world traffic dynamics. Most current studies depend on simulations that fail to 

capture the unpredictable nature of urban mobility. Developing experimental testbeds equipped with diverse 

sensors, V2X communication modules, and intelligent controllers can help evaluate system performance in 

real conditions. 

II. Another important direction is integrating multi-source data fusion with deep learning models to enhance 

traffic prediction and decision-making. Combining data from cameras, GPS signals, and environmental 

sensors can create context-aware systems capable of forecasting congestion before it occurs. Hybrid 

architectures that merge visual analytics with temporal learning can significantly improve responsiveness and 

accuracy. 

III. Sustainability and energy efficiency should also become central objectives in future designs. Implementing 

edge-based artificial intelligence and privacy-preserving frameworks can reduce energy consumption and 

latency while ensuring secure data handling. Furthermore, adopting a human-in-the-loop approach will help 

align automated traffic management decisions with ethical, social, and safety standards, especially in cities 

with limited digital infrastructure [36], [37]. 

5|Conclusion 

This study proposed a data-driven Smart Traffic Management System as a foundation for intelligent 

transportation within modern urban environments. By integrating real-time data collection, image processing, 

and machine learning, the system provides a more adaptive and sustainable alternative to conventional traffic 

control methods. It enhances mobility through dynamic signal optimization, rapid incident detection, and 

efficient resource utilization. 

The findings highlight that successful implementation requires not only advanced technology but also 

supportive policy frameworks, reliable infrastructure, and active public participation. Addressing these factors 

will ensure that future traffic systems are not only efficient but also inclusive and resilient. Ultimately, 

continuous research and large-scale testing will pave the way for next-generation urban mobility solutions 

that deliver safer, greener, and smarter cities. 

Funding 

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-

profit sectors. 

Data Availability 

All data are included in the text. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

[1]  Goswami, S. A., Padhya, B. P., & Patel, K. D. (2019). Internet of things: Applications, challenges and 

research issues. 2019 third international conference on I-SMAC (IoT in social, mobile, analytics and cloud)(I-

SMAC) (pp. 47-50). IEEE. https://doi.org/10.1109/I-SMAC47947.2019.9032474 

[2]  Pawar, L., Bajaj, R., Singh, J., & Yadav, V. (2019). Smart city IoT: Smart architectural solution for 

networking, congestion and heterogeneity. 2019 international conference on intelligent computing and control 

systems, ICCS 2019 (pp. 124–129). IEEE. https://doi.org/10.1109/ICCS45141.2019.9065688 



 Edalatpanah and Hess|Smart City Ins. 2(3) (2025) 136-144 

 

143

 

  [3]  Melibari, W., Baodhah, H., & Akkari, N. (2023). IoT-based smart cities beyond 2030: Enabling technologies, 

challenges, and solutions. 2023 1st international conference on advanced innovations in smart cities (ICAISC) 

(pp. 1–6). IEEE. https://doi.org/10.1109/ICAISC56366.2023.10085126 

[4]  Szum, K. (2021). IoT-based smart cities: A bibliometric analysis and literature review. Engineering 

management in production and services, 13(2), 115–136. https://doi.org/10.2478/emj-2021-0017 

[5]  Boogaard, H., Patton, A. P., Atkinson, R. W., Brook, J. R., Chang, H. H., Crouse, D. L., ... & Forastiere, F. 

(2022). Long-term exposure to traffic-related air pollution and selected health outcomes: A systematic 

review and meta-analysis. Environment international, 164, 107262. 

https://doi.org/10.1016/j.envint.2022.107262 

[6]  Mohapatra, H., & Rath, A. K. (2020). Fault-tolerant mechanism for wireless sensor network. IET wireless 

sensor systems, 10(1), 23–30. https://doi.org/10.1049/iet-wss.2019.0106 

[7]  Lazaridou, D., Michailidis, A., & Mattas, K. (2019). Evaluating the willingness to pay for using recycled 

water for irrigation. Sustainability, 11(19), 5220. https://doi.org/10.3390/su11195220 

[8]  Belli, L., Cilfone, A., Davoli, L., Ferrari, G., Adorni, P., Di Nocera, F., … & Bertolotti, E. (2020). IoT-

enabled smart sustainable cities: Challenges and approaches. Smart cities, 3(3), 1039–1071. 

https://doi.org/10.3390/smartcities3030052 

[9]  Mohapatra, H., & Rath, A. K. (2020). Survey on fault tolerance-based clustering evolution in WSN. IET 

networks, 9(4), 145–155. https://doi.org/10.1049/iet-net.2019.0155 

[10]  Robertson, D. I., & Bretherton, R. D. (1991). Optimizing networks of traffic signals in real time-the SCOOT 

method. IEEE transactions on vehicular technology, 40(1), 11–15. https://doi.org/10.1109/25.69966 

[11]  Whaiduzzaman, M., Barros, A., Chanda, M., Barman, S., Sultana, T., Rahman, M. S., … & Fidge, C. 

(2022). A review of emerging technologies for IoT-based smart cities. Sensors, 22(23), 9271. 

https://doi.org/10.3390/s22239271 

[12]  Rudenko, O., Liu, Y., Wang, C., & Rahardja, S. (2019). An extensive game-based resource allocation for 

securing D2D underlay communications. IEEE access, 7, 43052–43062. 

https://doi.org/10.1109/ACCESS.2019.2905581 

[13]  Kamruzzaman, M. M., Hossin, M. A., Alruwaili, O., Alanazi, S., Alruwaili, M., Alshammari, N., … & 

Zaman, R. (2022). IoT-oriented 6G wireless network system for smart cities. Computational intelligence and 

neuroscience, 2022(1), 1874436. https://doi.org/10.1155/2022/1874436 

[14]  Pu, W. (2011). Analytic relationships between travel time reliability measures. Transportation research 

record, 2254(1), 122–130. https://doi.org/10.3141/2254-13 

[15]  Mohapatra, H., & Rath, A. K. (2018). Fault tolerance through energy balanced cluster formation (EBCF) in 

WSN. In Smart innovations in communication and computational sciences: proceedings of ICSICCS-2018 (pp. 

313-321). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-13-2414-7_29 

[16]  Hammi, B., Khatoun, R., Zeadally, S., Fayad, A., & Khoukhi, L. (2017). IoT technologies for smart cities. 

IET networks, 7(1), 1–13. https://doi.org/10.1049/iet-net.2017.0163 

[17]  Mehmood, Y., Ahmad, F., Yaqoob, I., Adnane, A., Imran, M., & Guizani, S. (2017). Internet-of-things-based 

smart cities: Recent advances and challenges. IEEE communications magazine, 55(9), 16–24. 

https://doi.org/10.1109/MCOM.2017.1600514 

[18]  Ullah, A., Anwar, S. M., Li, J., Nadeem, L., Mahmood, T., Rehman, A., & Saba, T. (2024). Smart cities: The 

role of internet of things and machine learning in realizing a data-centric smart environment. Complex and 

intelligent systems, 10(1), 1607–1637. https://doi.org/10.1007/s40747-023-01175-4 

[19]  Chen, X., Yin, M., Song, M., Zhang, L., & Li, M. (2014). Social welfare maximization of multimodal 

transportation: Theory, metamodel, and application to Tianjin Ecocity, China. Transportation research 

record, 2451(1), 36–49. https://doi.org/10.3141/2451-05 

[20]  Achi, A., Salinesi, C., & Viscusi, G. (2016). Innovation capacity and the role of information systems: A 

qualitative study. Journal of management analytics, 3(4), 333–360. 

https://doi.org/10.1080/23270012.2016.1239228 

[21]  Abdel-Rahman, M., Zia, M., & Alduraibi, M. (2019). Temperature-dependent resistive properties of 

vanadium pentoxide/vanadium multi-layer thin films for microbolometer & antenna-coupled 

microbolometer applications. Sensors, 19(6), 1320. https://doi.org/10.3390/s19061320 



 Smart traffic management system: a data-driven approach to urban mobility 

 

144

 

  [22]  Ahlmeyer, M., & Chircu, A. M. (2016). Securing the internet of things: A review. Issues in information 

systems, 17(4), 21–28. https://iacis.org/iis/2016/4_iis_2016_21-28.pdf 

[23]  Mohapatra, H., & Rath, A. K. (2019). Detection and avoidance of water loss through municipality taps in 

India by using smart taps and ICT. IET wireless sensor systems, 9(6), 447–457. https://doi.org/10.1049/iet-

wss.2019.0081 

[24]  Mohapatra, H. (2021). Socio-technical challenges in the implementation of smart city. 2021 international 

conference on innovation and intelligence for informatics, computing, and technologies, 3ict 2021 (pp. 57–62). 

IEEE. https://doi.org/10.1109/3ICT53449.2021.9581905 

[25]  Mohapatra, H., & Rath, A. K. (2020). Nub less sensor based smart water tap for preventing water loss at 

public stand posts. Proceedings of 2020 IEEE workshop on microwave theory and techniques in wireless 

communications, mttw 2020 (Vol. 1, pp. 145–150). IEEE. https://doi.org/10.1109/MTTW51045.2020.9244926 

[26]  Tasken, K., & Ruppelt, A. (2006). Table contents. Frontiers in bioscience, 11, 2929–2939. 

file:///C:/Users/Administrator/Desktop/Landmark2022.pdf 

[27]  Islam, M. S., H-Ng, B. W., & Abbott, D. (2020). Terahertz ultrahigh-q metasurface enabled by out-of-plane 

asymmetry. 2020 45th international conference on infrared, millimeter, and terahertz waves (IRMMW-THZ) (pp. 

1–2). IEEE. https://doi.org/10.1109/IRMMW-THz46771.2020.9370414 

[28]  Zhong, W., & Xu, Y. (2010). Distributed energy efficient spectrum sharing strategy selection with limited 

feedback in mimo interference channels. 2010 IEEE global telecommunications conference globecom 2010 (pp. 

1–5). IEEE. https://doi.org/10.1109/GLOCOM.2010.5683868 

[29]  Zong, F., & Yue, S. (2023). Carbon emission impacts of longitudinal disturbance on low-penetration 

connected automated vehicle environments. Transportation research part d: transport and environment, 123, 

103911. https://doi.org/10.1016/j.trd.2023.103911 

[30]  Guerra, E., & Cervero, R. (2011). Cost of a ride: The effects of densities on fixed-guideway transit 

ridership and costs. Journal of the american planning association, 77(3), 267–290. 

https://doi.org/10.1080/01944363.2011.589767 

[31]  Geurs, K. T., & Van Wee, B. (2004). Accessibility evaluation of land-use and transport strategies: Review 

and research directions. Journal of transport geography, 12(2), 127–140. 

https://doi.org/10.1016/j.jtrangeo.2003.10.005 

[32]  Lv, Y., Duan, Y., Kang, W., Li, Z., & Wang, F. Y. (2015). Traffic flow prediction with big data: A deep 

learning approach. IEEE transactions on intelligent transportation systems, 16(2), 865–873. 

https://doi.org/10.1109/TITS.2014.2345663 

[33]  Ahmed, M. M., & Ghasemzadeh, A. (2018). The impacts of heavy rain on speed and headway Behaviors: 

An investigation using the SHRP2 naturalistic driving study data. Transportation research part c: emerging 

technologies, 91, 371–384. https://doi.org/10.1016/j.trc.2018.04.012 

[34]  Khaksari, A., Tsaousoglou, G., Makris, P., Steriotis, K., Efthymiopoulos, N., & Varvarigos, E. (2021). Sizing 

of electric vehicle charging stations with smart charging capabilities and quality of service requirements. 

Sustainable cities and society, 70, 102872. https://doi.org/10.1016/j.scs.2021.102872 

[35]  Stone, A. A., & Schneider, S. (2016). Commuting episodes in the United States: Their correlates with 

experiential wellbeing from the American Time Use Survey. Transportation research part f: traffic psychology 

and behaviour, 42, 117–124. https://doi.org/10.1016/j.trf.2016.07.004 

[36]  Wang, Y. P. E., Lin, X., Adhikary, A., Grovlen, A., Sui, Y., Blankenship, Y., … & Razaghi, H. S. (2017). A 

primer on 3GPP narrowband Internet of Things. IEEE communications magazine, 55(3), 117–123. 

https://doi.org/10.1109/MCOM.2017.1600510CM 

[37]  Hernandez, W., Mendez, A., Zalakeviciute, R., & Diaz-Marquez, A. M. (2020). Robust confidence intervals 

for PM2. 5 concentration measurements in the ecuadorian park la carolina. Sensors, 20(3), 654. 

https://doi.org/10.3390/s20030654 

 

 


