

Modeling and Performance Assessment of AI–IoT Fusion for Smart City Surveillance and Urban Management

Eisa Abdolmaleki*

Department of Mathematic, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran; eisa.abdolmaleki@gmail.com

Citation:

Received: 03 January 2025

Revised: 04 April 2025

Accepted: 17 May 2025

Abdolmaleki, E. (2025). Modeling and performance assessment of AI–IoT fusion for smart city surveillance and urban management. *Smart city insights*, 2(3), 145–150.

Abstract

The most common problems concerning smart city surveillance systems include data overload, inefficiency, and analysis. These challenges test the systems' ability to address issues related to crime, traffic congestion, and environmental factors in urban areas.

This paper proposes a novel framework that integrates AI and IoT technologies to complement the surveillance of a smart city, including the analytical processing of data needed for real-time monitoring, detecting abnormal patterns, and deriving predictions from anomaly detection based on IoT-sensing devices deployed in all conceivable spaces in the city, sensing the views and dynamics around urban locales. The suggested framework demonstrated enhanced efficiency, accuracy, and decision-making capabilities in surveillance. AI analytics presented an opportunity to pinpoint potential threats through automated means, resource optimization, and proactive action against urban challenges.

Integrating AI and IoT into smart city surveillance offers a promising approach to solving complex problems in urban areas. Advanced technologies can enhance public safety, improve the quality of life, and create more sustainable, resilient urban areas.

Keywords: AI–IoT integration, Smart city surveillance, Data analytics, Predictive modeling, Urban management.

1 | Introduction

The confluence of AI and IoT has become a revolutionary solution for improving smart city surveillance systems. It enables cities to monitor, analyze, and respond effectively to improve public safety, optimize resource utilization, and increase residents' quality of life. Combining AI analytical capacity with IoT connectivity will enhance smart city surveillance systems.

 Corresponding Author: eisa.abdolmaleki@gmail.com

 <https://doi.org/10.22105/sci.v2i3.43>

 Licensee System Analytics. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).

In real time, it processes vast amounts of data from diverse sources: cameras, sensors, and other connected devices [1].

AI algorithms support this information by identifying anomalies and forecasting potential security threats through automated decision-making. IoT infrastructure enables some surveillance network elements to share their information. It doesn't let them miss anything, and quick response capabilities are enabled. The Synergy of AI and IoT enhances situational awareness, reduces false alarms, and improves detection accuracy, enabling efficient resource management [2].

This integration also enables sophisticated applications such as predictive policing, optimized emergency response, and intelligent traffic management, thereby facilitating safer, more resilient environments within the urban ecosystem. The AI-IoT integration enables cities to become more proactive in addressing security issues while helping them efficiently manage scarce resources, such as law enforcement and traffic flow. However, implementing AI-IoT-integrated surveillance systems raises significant ethical and privacy issues. Better governance structures and clear policies are thus necessary for balancing public safety with the need to protect individual privacy rights. Helping the public build trust and use technology responsibly will, of course, depend on the capacity to address concerns regarding these issues [3].

The paper discusses the current state of fusion between AI and IoT in smart city surveillance, covering the key technologies, applications, benefits, and challenges. It also discusses future trends and their implications for urban planning and governance [4].

1.1 | Figures and Tables

The Smart City Surveillance System includes IoT devices such as cameras and sensors to capture data, data collection units for aggregation, data transmission via secure networks, AI-powered data processing for analysis and action-response mechanisms (alerts, law enforcement), and visualization tools for real-time monitoring and decision-making.

Fig. 1. Components of a smart city.

AI and IoT technologies work together to enhance the capabilities of urban surveillance systems. By combining IoT's ability to gather vast amounts of data with AI's real-time data analysis and decision-making, smart cities can improve security, resource management, and operational efficiency. The integration offers numerous advantages, from enhanced threat detection to cost savings.

Table 1. Benefits of AI-IoT integration in smart city surveillance.

Benefit	Description
Real-time monitoring	Enables continuous data collection and analysis for instant situational awareness.
Automated threat detection	AI algorithms detect unusual patterns, reducing the need for manual intervention.
Predictive analytics	Anticipates security risks and resource needs, enhancing proactive measures.
Reduced operational costs	Automates tasks like surveillance and reporting, cutting human resource expenses.
Scalability and flexibility	Easily adapts to growing urban environments and changing surveillance needs.
Enhanced decision making	Provides actionable insights for better, data-driven governance and law enforcement.
Improved public safety	Faster response times and improved accuracy lead to safer urban environments.

Despite the significant benefits of AI-IoT integration in smart city surveillance, several challenges must be addressed for its successful deployment. These challenges stem from the complexities of managing massive IoT data, ensuring secure AI processing, and integrating diverse systems. The table below summarizes the key challenges in implementing AI-IoT solutions for smart city surveillance [5].

Table 2. The key challenges in implementing AI-IoT Integration.

Challenge	Description
Data privacy and security	Protecting sensitive surveillance data from breaches and ensuring secure transmission.
Scalability issues	Handling the increasing volume of IoT devices and data as cities expand.
Interoperability	Integrating diverse IoT devices, protocols, and AI platforms for seamless operation.
Latency and bandwidth	Ensuring real-time processing with limited network bandwidth and low latency.
Cost of infrastructure	High initial investments in AI systems, IoT devices, and network upgrades.
Energy consumption	Managing the high energy demands of IoT devices and AI processing at scale.
Ethical concerns	Addressing issues related to surveillance overreach and AI-driven decision-making biases.

Variables and equations

Key variables:

- I. D: total data collected by IoT devices (e.g., cameras, sensors) in bytes or gigabytes.
- II. B: bandwidth available for transmitting IoT data (in Mbps).
- III. L: latency in the system for data processing (in milliseconds).
- IV. P: processing power available at the edge (in FLOPS or other units).
- V. S: security level required for data (encryption, authentication mechanisms).
- VI. E: the system's energy consumption (in watts).
- VII. T: time taken for AI to analyze data (response time in seconds).
- VIII. R: accuracy of AI-driven predictions or recognition (as a percentage or probability).
- IX. C: cost of operating the AI-IoT infrastructure (in dollars).

Equations and relationships:

- I. Data transmission

$$T_{transmission} = D/B,$$

where $t_{transmission}$ is the time it takes to transmit the collected data D over a network with bandwidth B.

- II. Latency

$$L_{total} = L_{network} + L_{processing} + L_{decision}.$$

This equation calculates the total latency, accounting for network communication latency, data processing latency, and decision-making time.

- III. Energy consumption

$$E_{total} = E_{IoT} + E_{AI} + E_{network}.$$

E_{total} : the total energy consumption, including the energy consumed by IoT devices (EIoT), AI processing (EAI), and network transmission (Enetwork).

IV. AI accuracy

$$R = \{\text{Correct Predictions}/\text{Total Predictions}\} \times 100.$$

It calculates the accuracy R of AI-driven predictions based on the ratio of correct predictions to the total number of predictions.

V. Cost estimation

$$C = \text{CIoT} + \text{CAI} + \text{CMaintenance}.$$

C is the total cost, combining the costs of IoT deployment (CIoT, AI CIoT, AI infrastructure CAI CAI) and ongoing maintenance (CMaintenance, CMaintenance).

VI. Processing power requirement

$$P_{\text{required}} = \{D \times M_{\text{complexity}}\}/T.$$

This equation calculates the required processing power, where D is the amount of data, M is the complexity of the AI model, and T is the desired processing time.

VII. Security overhead

$$S_{\text{overhead}} = \{D \times S_{\text{encryption}}\}/B.$$

This equation defines the overhead time due to security requirements, where Sencryption represents the complexity of the encryption protocol.

These equations and variables illustrate how various aspects of AI-IoT fusion for smart city surveillance can be mathematically modeled, thereby helping optimize systems for efficiency, speed, and security.

2 | Application Scenarios

2.1 | Traffic Management and Monitoring

AI-IoT systems can analyze real-time data from road cameras and sensors, manage traffic flow, detect accidents, and optimize signal timing. AI will predict congestion and suggest alternative routes. IoT devices enable real-time monitoring of traffic conditions, reducing commute times and improving security [6], [7].

2.2 | Public Safety and Crime Prevention

AI-powered surveillance can use footage from city cameras to track suspicious activities such as theft, violence, and unauthorized gatherings. IoT sensors and AI algorithms can automate alerting and police calls, enabling rapid responses and significant improvements in urban security [5].

2.3 | Environmental Monitoring

AI-IoT can measure the city's air quality and noise levels, among other things, and identify anomalies in environmental conditions, such as pollution levels. It streams actionable insights to City Authorities so they can mitigate environmental hazards, hence improving the quality of life of its citizens.

2.4 | Disaster Management and Response

IoT sensors can detect early signs of natural disasters, such as floods and earthquakes; meanwhile, AI processing models perform calculations on this data, enabling predictions of their impacts. When citizens and authorities are alerted, they can begin early evacuations or resource deployments to minimize damage and save lives [4].

2.5 | Smart Street Lighting

IoT connections with smart streetlights usually include built-in AI that adjusts the lights' brightness when pedestrian or car movement is detected. It means it uses optimal lighting without consuming much energy. It also increases safety and utilizes more light once a peak or suspicious movement is observed in those areas [8].

2.6 | Crowd Management and Event Monitoring

AI-IoT-based systems can also monitor crowd density and movement patterns in public events to prevent stampedes or overcrowding. Such AI techniques will analyze data from cameras and IoT sensors to predict hazardous crowd behavior, enabling authorities to manage public spaces more effectively than before [9].

3 | Performance Assessment of AI-IoT Integration in Smart City Surveillance

Evaluating the performance of AI-IoT fusion in smart city surveillance is vital for understanding its impact on urban management. Key metrics include data processing speed, threat identification accuracy, latency, and system scalability. As IoT devices generate vast amounts of real-time data, assessing the system's ability to process it with AI models efficiently is crucial. Low latency and fast data transmission are essential for timely decision-making and response in critical situations such as crime detection or traffic management [8].

Another important aspect is accuracy in AI-driven analysis, particularly in recognizing patterns or anomalies in video footage or sensor data. Performance also depends on the system's scalability, as the number of IoT devices and the volume of data continue to grow with expanding urban populations. Scalability ensures the system can adapt to future needs without performance degradation [10].

Energy efficiency and cost-effectiveness are critical for long-term sustainability. AI-IoT systems consume significant energy, particularly during data transmission and processing, so evaluating energy consumption helps balance performance with environmental impact. Lastly, ensuring robust data security and privacy, alongside system interoperability across diverse devices and platforms, is key for maintaining public trust in these surveillance solutions [11].

4 | Key Challenges and Future Prospects

Some challenges confront surveillance in smart cities, stemming from the integration of AI and IoT. Data privacy and security are significant threats posed by IoT devices, given the large amounts of sensitive information they generate that must be protected against cyber threats. Ensuring secure data transmission and processing while complying with stringent privacy regulations is complex. Scalability is another major challenge because cities are expanding; as a result, the number of connected IoT devices is also increasing. Scalable infrastructure with efficient data processing solutions is a must to handle large volumes of data without compromising system performance [4].

It adds another dimension of pressure, especially to applications that must support real-time crime prevention or traffic management decisions. Any form of interoperability across such a wide variety of IoT devices and AI platforms is difficult to achieve; the standards and protocols may not enable smooth communication among them. The high cost of deploying, maintaining, and upgrading AI-IoT infrastructures with high energy consumption generally limits much-needed adoption.

Additionally, improvements in edge computing will reduce latency and bandwidth requirements by processing data locally rather than in centralized cloud systems. Federated learning and other related privacy-preserving AI technologies will solve the issues connected with data security. Standardized protocols for communication between IoT devices and AI systems can further improve interoperability, while developing energy-efficient technologies can offer sustainability in AI-IoT solutions used in smart cities [12].

Funding

This research received no external funding.

Data Availability

This research relies on publicly accessible data sources to support its findings. These sources include academic journals, industry reports, and case studies exploring AI-IoT applications in smart city surveillance and related IoT infrastructure. The specific datasets used can be found through the referenced works and institutional repositories.

Conflicts of Interest

The authors declare no conflicts of interest in publishing this article. The research presented in this article is solely based on the authors' initial findings and insights on the integration of AI and IoT for smart city monitoring. All information has been prepared and presented with scientific integrity and ethical standards.

References

- [1] Nguyen, H., Nawara, D., & Kashef, R. (2024). Connecting the indispensable roles of IoT and artificial intelligence in smart cities: A survey. *Journal of information and intelligence*, 2(3), 261–285. <https://doi.org/10.1016/j.jiixd.2024.01.003>
- [2] Dardour, A., El Haji, E., & Begdouri, M. A. (2025). Video surveillance and artificial intelligence for urban security in smart cities: A review of a selection of empirical studies from 2018 to 2024. *Computer sciences & mathematics forum* (Vol. 10, No. 1, p. 15). MDPI. <https://doi.org/10.3390/cmsf2025010015>
- [3] Sharma, H., & Kanwal, N. (2024). Smart surveillance using IoT: A review. *Radioelectronic and computer systems*, 2024(1), 116–126. <https://doi.org/10.32620/reks.2024.1.10>
- [4] Bhardwaj, V., Anooja, A., Vermani, L. S., Sunita, & Dhaliwal, B. K. (2024). Smart cities and the IoT: An in-depth analysis of global research trends and future directions. *Discover internet of things*, 4(1), 19. <https://doi.org/10.1007/s43926-024-00076-3>
- [5] Wolniak, R., & Stecuła, K. (2024). Artificial intelligence in smart cities—applications, barriers, and future directions: A review. *Smart cities*, 7(3), 1346–1389. <https://doi.org/10.3390/smartcities7030057>
- [6] Humayun, M., Alsaqer, M. S., & Jhanjhi, N. (2022). Energy optimization for smart cities using iot. *Applied artificial intelligence*, 36(1), 2037255. <https://doi.org/10.1080/08839514.2022.2037255>
- [7] Das, R. P., Samal, T. K., & Luhach, A. K. (2023). An energy efficient evolutionary approach for smart city-based IoT applications. *Mathematical problems in engineering*, 2023(1), 9937949. <https://doi.org/10.1155/2023/9937949>
- [8] Ullah, A., Anwar, S. M., Li, J., Nadeem, L., Mahmood, T., Rehman, A., & Saba, T. (2024). Smart cities: The role of internet of things and machine learning in realizing a data-centric smart environment. *Complex and intelligent systems*, 10(1), 1607–1637. <https://doi.org/10.1007/s40747-023-01175-4>
- [9] Dou, X., Chen, W., Zhu, L., Bai, Y., Li, Y., & Wu, X. (2023). Machine learning for smart cities: A comprehensive review of applications and opportunities. *International journal of advanced computer science and applications*, 14(9), 999–1016. <https://doi.org/10.14569/IJACSA.2023.01409104>
- [10] Cheikh, I., Roy, S., Sabir, E., & Aouami, R. (2025). *Energy, scalability, data and security in massive IoT: Current landscape and future directions*. <https://arxiv.org/abs/2505.03036>
- [11] Sacoto-Cabrera, E. J., Perez-Torres, A., Tello-Oquendo, L., & Cerrada, M. (2025). IoT, AI, and digital twins in smart cities: A systematic review for a thematic mapping and research agenda. *Smart cities*, 8(5), 175. <https://doi.org/10.3390/smartcities8050175>
- [12] Alahi, M. E. E., Sukkuea, A., Tina, F. W., Nag, A., Kurdthongmee, W., Suwanarat, K., & Mukhopadhyay, S. C. (2023). Integration of IoT-enabled technologies and artificial intelligence (AI) for smart city scenario: Recent advancements and future trends. *Sensors*, 23(11), 5206. <https://doi.org/10.3390/s23115206>