AI-enhanced IoT architectures for intelligent and sustainable smart city networks
Abstract
The emergence of smart cities has necessitated advanced, efficient, and scalable networking solutions capable of managing vast amounts of data generated by the Internet of Things (IoT). Leveraging Artificial Intelligence (AI) alongside IoT infrastructure offers transformative potential in optimizing smart city operations. This paper explores the integration of AI with IoT to enhance networking capabilities for smart cities. It examines AI-driven optimization techniques, potential applications across different urban systems, and the challenges in implementing these technologies. It offers insights into how AI-enhanced IoT networks can support sustainable, resilient, and citizen-centered urban environments.
Keywords:
Internet of things, Artificial intelligence, AI-driven optimizationReferences
- [1] Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of things for smart cities. IEEE internet of things journal, 1(1), 22–32. https://doi.org/10.1109/JIOT.2014.2306328
- [2] Khan, L. U., Yaqoob, I., Imran, M., Han, Z., & Hong, C. S. (2020). 6G wireless systems: A vision, architectural elements, and future directions. IEEE access, 8, 147029–147044. https://doi.org/10.1109/ACCESS.2020.3015289
- [3] Batty, M., Axhausen, K. W., Giannotti, F., Pozdnoukhov, A., Bazzani, A., Wachowicz, M., … & Portugali, Y. (2012). Smart cities of the future. The european physical journal special topics, 214(1), 481–518. https://doi.org/10.1140/epjst/e2012-01703-3
- [4] Talari, S., Shafie-Khah, M., Siano, P., Loia, V., Tommasetti, A., & Catalão, J. P. S. (2017). A review of smart cities based on the internet of things concept. Energies, 10(4), 421. https://doi.org/10.3390/en10040421
- [5] Xu, L. Da, He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE transactions on industrial informatics, 10(4), 2233–2243. https://doi.org/10.1109/TII.2014.2300753
- [6] Alsheikh, M. A., Lin, S., Niyato, D., & Tan, H. P. (2014). Machine learning in wireless sensor networks: Algorithms, strategies, and applications. IEEE communications surveys and tutorials, 16(4), 1996–2018. https://doi.org/10.1109/COMST.2014.2320099
- [7] Dastjerdi, A. V., & Buyya, R. (2016). Fog computing: Helping the internet of things realize its potential. Computer, 49(8), 112–116. https://doi.org/10.1109/MC.2016.245
- [8] Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and challenges. IEEE internet of things journal, 3(5), 637–646. https://doi.org/10.1109/JIOT.2016.2579198
- [9] Meireles, T., Fonseca, J., & Ferreira, J. (2016). Deterministic vehicular communications supported by the roadside infrastructure: A case study. In Intelligent transportation systems: dependable vehicular communications for improved road safety (pp. 49–80). Springer. https://doi.org/10.1007/978-3-319-28183-4_3
- [10] Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog computing and its role in the internet of things [presentation]. Proceedings of the first edition of the mcc workshop on mobile cloud computing (pp. 13–16). https://doi.org/10.1145/2342509.234251
- [11] Alahakoon, D., & Yu, X. (2015). Smart electricity meter data intelligence for future energy systems: A survey. IEEE transactions on industrial informatics, 12(1), 425–436. https://doi.org/10.1109/TII.2015.2414355
- [12] Vijayan, V., Mohapatra, A., & Singh, S. N. (2021). Demand response with volt/var optimization for unbalanced active distribution systems. Applied energy, 300, 117361. https://doi.org/10.1016/j.apenergy.2021.117361
- [13] Kerper, M., Wewetzer, C., Sasse, A., & Mauve, M. (2012, May). Learning traffic light phase schedules from velocity profiles in the cloud. 2012 5th international conference on new technologies, mobility and security (NTMS) (pp. 1-5). IEEE. https://doi.org/10.1109/NTMS.2012.6208704
- [14] D’Amico, G., Szopik-Depczyńska, K., Dembińska, I., & Ioppolo, G. (2021). Smart and sustainable logistics of Port cities: A framework for comprehending enabling factors, domains and goals. Sustainable cities and society, 69, 102801. https://doi.org/10.1016/j.scs.2021.102801
- [15] Sicari, S., Rizzardi, A., Grieco, L. A., & Coen-Porisini, A. (2015). Security, privacy and trust in Internet of Things: The road ahead. Computer networks, 76, 146–164. https://doi.org/10.1016/j.comnet.2014.11.008
- [16] Roman, R., Zhou, J., & Lopez, J. (2013). On the features and challenges of security and privacy in distributed internet of things. Computer networks, 57(10), 2266–2279. https://doi.org/10.1016/j.comnet.2012.12.018
- [17] Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of things (IoT): A vision, architectural elements, and future directions. Future generation computer systems, 29(7), 1645–1660. https://doi.org/10.1016/j.future.2013.01.010
- [18] Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated machine learning: Concept and applications. ACM transactions on intelligent systems and technology, 10(2), 1–19. https://doi.org/10.1145/3298981
- [19] Gyongyosi, L., & Imre, S. (2019). A survey on quantum computing technology. Computer science review, 31, 51–71. https://doi.org/10.1016/j.cosrev.2018.11.002
- [20] Chiang, M., & Zhang, T. (2016). Fog and IoT: An overview of research opportunities. IEEE internet of things journal, 3(6), 854–864. https://doi.org/10.1109/JIOT.2016.2584538