Machine learning–enabled framework for energy infrastructure optimization in IoT-based smart cities

Authors

  • Mingyue Wang * School of Computer and Information, Lanzhou University of Technology, China. https://orcid.org/0009-0005-5983-8646
  • Zhang Hao Institute of Education, Guizhou Normal University, Guizhou Province, China.

https://doi.org/10.22105/sci.v2i1.33

Abstract

The idea of smart cities focuses on leveraging modern technologies to enhance and streamline city operations, particularly energy infrastructure. One of the key challenges that smart cities face is ensuring the efficient management of energy resources to minimize consumption, costs, and environmental impact. Machine Learning (ML) provides a powerful means to optimize energy usage within urban infrastructure. This paper introduces a framework to optimize energy management in smart cities by employing ML techniques. The framework comprises three primary components: data collection, model development, and energy optimization. Data collection entails gathering energy consumption information from various sources like smart meters, sensors, and other Internet of Things (IoT) devices. After data preprocessing and cleaning, ML models, using techniques such as regression, classification, clustering, and deep learning, are developed to forecast energy consumption and optimize usage. The optimization process then utilizes these models to balance energy supply and demand, ultimately reducing overall consumption and cost. The framework is advantageous in decreasing energy use, lowering costs, and reducing environmental impacts while improving the reliability and efficiency of urban energy infrastructure. This solution can be applied across smart city domains such as buildings, transportation, and industrial activities.

Keywords:

Smart cities, Energy infrastructure, Machine learning, Energy optimization, IoT devices, Energy consumption, Urban sustainability

References

  1. [1] Zaman, M., Puryear, N., Abdelwahed, S., & Zohrabi, N. (2024). A review of IoT-based smart city development and management. Smart cities, 7(3), 1462–1501. https://doi.org/10.3390/smartcities7030061

  2. [2] Whaiduzzaman, M., Barros, A., Chanda, M., Barman, S., Sultana, T., Rahman, M. S., … & Fidge, C. (2022). A review of emerging technologies for IoT-based smart cities. Sensors, 22(23), 9271. https://doi.org/10.3390/s22239271

  3. [3] ur Rehman, U., Faria, P., Gomes, L., & Vale, Z. (2023). Future of energy management systems in smart cities: A systematic literature review. Sustainable cities and society, 96, 104720. https://doi.org/10.1016/j.scs.2023.104720

  4. [4] Adebiyi, A. A., & Habyarimana, M. (2025). Systematic review of optimization methodologies for smart home energy management systems. Energies, 18(19), 5262. https://doi.org/10.3390/en18195262

  5. [5] Nakıp, M., Çopur, O., Biyik, E., & Güzeliş, C. (2023). Renewable energy management in smart home environment via forecast embedded scheduling based on Recurrent Trend Predictive Neural Network. Applied energy, 340, 121014. https://doi.org/10.1016/j.apenergy.2023.121014

  6. [6] Ukoba, K., Olatunji, K. O., Adeoye, E., Jen, T. C., & Madyira, D. M. (2024). Optimizing renewable energy systems through artificial intelligence: Review and future prospects. Energy & environment, 35(7), 3833–3879. https://doi.org/10.1177/0958305X241256293

  7. [7] Rao, C. K., Sahoo, S. K., & Yanine, F. F. (2025). A comprehensive review of smart energy management systems for photovoltaic power generation utilizing the internet of things. Unconventional resources, 7, 100197. https://doi.org/10.1016/j.uncres.2025.100197

  8. [8] Tang, Z., Xie, H., Du, C., Liu, Y., Khalaf, O. I., & Allimuthu, U. K. (2022). Machine learning assisted energy optimization in smart grid for smart city applications. Journal of interconnection networks, 22(Supp03), 2144006. https://doi.org/10.1142/S0219265921440060

  9. [9] Mischos, S., Dalagdi, E., & Vrakas, D. (2023). Intelligent energy management systems: A review. Artificial intelligence review, 56(10), 11635–11674. https://doi.org/10.1007/s10462-023-10441-3

  10. [10] Al-Obaidi, K. M., Hossain, M., Alduais, N. A. M., Al-Duais, H. S., Omrany, H., & Ghaffarianhoseini, A. (2022). A review of using IoT for energy efficient buildings and cities: A built environment perspective. Energies, 15(16), 5991. https://doi.org/10.3390/en15165991

  11. [11] Poyyamozhi, M., Murugesan, B., Rajamanickam, N., Shorfuzzaman, M., & Aboelmagd, Y. (2024). IoT—A promising solution to energy management in smart buildings: A systematic review, applications, barriers, and future scope. Buildings, 14(11), 3446. https://doi.org/10.3390/buildings14113446

  12. [12] Mishra, P., & Singh, G. (2023). Energy management systems in sustainable smart cities based on the internet of energy: A technical review. Energies, 16(19), 6903. https://doi.org/10.3390/en16196903

  13. [13] Yusoff, Z. M., Muhammad, Z., Razi, M. S. I. M., Razali, N. F., & Hashim, M. H. C. (2020). IoT-based smart street lighting enhances energy conservation. Indonesian journal of electrical engineering and computer science, 20(1), 528–536. https://doi.org/10.11591/ijeecs.v20.i1.pp528-536

  14. [14] Abdullah, A., Yusoff, S. H., Zaini, S. A., Midi, N. S., & Mohamad, S. Y. (2019). Energy efficient smart street light for smart city using sensors and controller. Bulletin of electrical engineering and informatics, 8(2), 558–568. https://doi.org/10.11591/eei.v8i2.1527

  15. [15] Singh, A. R., Sujatha, M. S., Kadu, A. D., Bajaj, M., Addis, H. K., & Sarada, K. (2025). A deep learning and IoT-driven framework for real-time adaptive resource allocation and grid optimization in smart energy systems. Scientific reports, 15(1), 19309. https://www.nature.com/articles/s41598-025-02649-w

  16. [16] Dutta, H., Minerva, R., Alvi, M., & Crespi, N. (2025). Data-driven modality fusion: An AI-enabled framework for large-scale sensor network management. https://arxiv.org/abs/2502.04937

  17. [17] Sanchez-Sutil, F., & Cano-Ortega, A. (2021). Smart regulation and efficiency energy system for street lighting with LoRa LPWAN. Sustainable cities and society, 70, 102912. https://doi.org/10.1016/j.scs.2021.102912

  18. [18] Humayun, M., Alsaqer, M. S., & Jhanjhi, N. (2022). Energy optimization for smart cities using iot. Applied artificial intelligence, 36(1), 2037255. https://doi.org/10.1080/08839514.2022.2037255

  19. [19] Bachanek, K. H., Tundys, B., Wiśniewski, T., Puzio, E., & Maroušková, A. (2021). Intelligent street lighting in a smart city concepts—A direction to energy saving in cities: An overview and case study. Energies, 14(11), 3018. https://doi.org/10.3390/en14113018

  20. [20] Rajaan, R., Baishya, B. K., Rao, T. V., Pattanaik, B., & Tripathi, M. A. (2024). Efficient usage of energy infrastructure in smart city using machine learning. EAI endorsed transactions on internet of things, 10, 1–7. https://doi.org/10.4108/eetiot.5363

  21. [21] Akram, A., Abbas, S., Khan, M., Athar, A., Ghazal, T., & Al Hamadi, H. (2024). Smart energy management system using machine learning. Computers, materials & continua, 78(1), 959–973. https://doi.org/10.32604/cmc.2023.032216

  22. [22] Mahomed, A. S., & Saha, A. K. (2025). Unleashing the potential of 5G for smart cities: A focus on real-time digital twin integration. Smart cities, 8(2), 70. https://doi.org/10.3390/smartcities8020070

  23. [23] Paudel, S., Nguyen, P. H., Kling, W. L., Elmitri, M., Lacarrière, B., & Corre, O. Le. (2015). Support vector machine in prediction of building energy demand using pseudo dynamic approach. https://arxiv.org/abs/1507.05019

Published

2025-03-27

How to Cite

Wang, M., & Hao, Z. (2025). Machine learning–enabled framework for energy infrastructure optimization in IoT-based smart cities. Smart City Insights, 2(1), 47-56. https://doi.org/10.22105/sci.v2i1.33