An AI-driven adaptive security framework for wireless sensor networks in smart city environments

Authors

https://doi.org/10.22105/sci.v2i2.39

Abstract

As smart cities evolve, Wireless Sensor Networks (WSNs) are crucial in real-time data collection and monitoring. However, cyber-attacks increasingly target these networks, necessitating advanced security solutions. AI-powered security protocols offer a promising approach, using Machine Learning (ML) to detect and respond to threats in real time. This paper explores the application of AI-driven security mechanisms within smart city WSNs, including intrusion detection, anomaly detection, and automated response protocols. Simulations indicate that AI-based security models significantly enhance network resilience, reduce attack response time, and improve data integrity, making them ideal for future smart city deployments.

Keywords:

AI-powered security, Smart city, Wireless sensor networks, Machine learning, Intrusion detection

References

  1. [1] Sharma, H., Haque, A., & Blaabjerg, F. (2021). Machine learning in wireless sensor networks for smart cities: A survey. Electronics, 10(9), 1012. https://doi.org/10.3390/electronics10091012

  2. [2] Koufoudakis, G., Oikonomou, K., Giannakis, K., & Aïssa, S. (2018). Probabilistic flooding coverage analysis for efficient information dissemination in wireless networks. Computer networks, 140, 51–61. https://doi.org/10.1016/j.comnet.2018.05.005

  3. [3] Jurado-Lasso, F. F., Marchegiani, L., Jurado, J. F., Abu-Mahfouz, A. M., & Fafoutis, X. (2022). A survey on machine learning software-defined wireless sensor networks (ml-SDWSNS): Current status and major challenges. IEEE access, 10, 23560–23592. https://doi.org/10.1109/ACCESS.2022.3153521

  4. [4] Moslehi, M. M. (2025). Exploring coverage and security challenges in wireless sensor networks: A survey. Computer networks, 260, 111096. https://doi.org/10.1016/j.comnet.2025.111096

  5. [5] Wang, S., Jiang, H., Qiao, Y., Jiang, S., Lin, H., & Sun, Q. (2022). The research progress of vision-based artificial intelligence in smart pig farming. Sensors, 22(17), 6541. https://doi.org/10.3390/s22176541

  6. [6] Delwar, T. S., Aras, U., Mukhopadhyay, S., Kumar, A., Kshirsagar, U., Lee, Y., … & Ryu, J. Y. (2024). The intersection of machine learning and wireless sensor network security for cyber-attack detection: A detailed analysis. Sensors, 24(19), 6377. https://doi.org/10.3390/s24196377

  7. [7] Ahmad, R., Wazirali, R., & Abu-Ain, T. (2022). Machine learning for wireless sensor networks security: An overview of challenges and issues. Sensors, 22(13), 4730. https://doi.org/10.3390/s22134730

  8. [8] Behiry, M. H., & Aly, M. (2024). Cyberattack detection in wireless sensor networks using a hybrid feature reduction technique with AI and machine learning methods. Journal of big data, 11(1), 16. https://journalofbigdata.springeropen.com/articles/10.1186/s40537-023-00870-w

  9. [9] Hu, L., Han, C., Wang, X., Zhu, H., & Ouyang, J. (2024). Security enhancement for deep reinforcement learning-based strategy in energy-efficient wireless sensor networks. Sensors, 24(6), 1993. https://doi.org/10.3390/s24061993

  10. [10] Satori, H. (2024). Machine learning attack detection based-on stochastic classifier methods for enhancing of routing security in wireless sensor networks. Ad hoc networks, 163, 103581. https://doi.org/10.1016/j.adhoc.2024.103581

  11. [11] Luo, T., & Nagarajan, S. G. (2018). Distributed anomaly detection using autoencoder neural networks in wsn for IoT. 2018 IEEE international conference on communications (ICC) (pp. 1–6). IEEE. https://doi.org/10.1109/ICC.2018.8422402

  12. [12] Talukder, M. A., Khalid, M., & Sultana, N. (2025). A hybrid machine learning model for intrusion detection in wireless sensor networks leveraging data balancing and dimensionality reduction. Scientific reports, 15(1), 4617. https://www.nature.com/articles/s41598-025-87028-1

  13. [13] Gueriani, A., Kheddar, H., & Mazari, A. C. (2023). Deep reinforcement learning for intrusion detection in IoT: A survey. 2023 2nd international conference on electronics, energy and measurement (IC2EM) (Vol. 1, pp. 1–7). IEEE. https://doi.org/10.1109/IC2EM59347.2023.10419560

  14. [14] Jada, I., & Mayayise, T. O. (2024). The impact of artificial intelligence on organisational cyber security: An outcome of a systematic literature review. Data and information management, 8(2), 100063. https://doi.org/10.1016/j.dim.2023.100063

  15. [15] Malibari, A. A., Nour, M. K., Al-Wesabi, F. N., Alabdan, R., Mohamed, A., Al Duhayyim, M., … & Gupta, D. (2023). Metaheuristics with deep learning enabled epileptic seizure classification for smart healthcare on cyborg robots. Human-centric computing and information sciences, 13(39), 1–17. https://doi.org/10.22967/HCIS.2023.13.039

  16. [16] Srinivasan, N. (2024). Artificial intelligence in IoT security: Review of advancements, challenges, and future directions. Challenges, and future directions (may 29, 2024), 13(7), 14–20. https://www.ijitee.org/wp-content/uploads/papers/v13i7/G991113070624.pdf

  17. [17] Nawaz, M., & Babar, M. I. K. (2025). IoT and AI for smart agriculture in resource-constrained environments: Challenges, opportunities and solutions. Discover internet of things, 5(1), 24. https://doi.org/10.1007/s43926-025-00119-3

  18. [18] Meziane, H., & Ouerdi, N. (2023). A survey on performance evaluation of artificial intelligence algorithms for improving IoT security systems. Scientific reports, 13(1), 21255. https://www.nature.com/articles/s41598-023-46640-9

  19. [19] Yeng, P. K., Nweke, L. O., Yang, B., Ali Fauzi, M., & Snekkenes, E. A. (2021). Artificial intelligence--based framework for analyzing health care staff security practice: Mapping review and simulation study. JMIR medical informatics, 9(12), e19250. https://preprints.jmir.org/preprint/19250?__hstc=102212634.67fe446999e9bea8b41a31f0ecdcb3c6.1762702304873.1762702304873.1762702304873.1&__hssc=102212634.1.1762702304873&__hsfp=3439553344

  20. [20] Mariettou, S., Koutsojannis, C., & Triantafillou, V. (2025). Artificial intelligence and algorithmic approaches of health security systems: A review. Algorithms, 18(2), 59. https://doi.org/10.3390/a18020059

  21. [21] Khan, M. M., Shah, N., Shaikh, N., Thabet, A., & Belkhair, S. (2025). Towards secure and trusted AI in healthcare: A systematic review of emerging innovations and ethical challenges. International journal of medical informatics, 195, 105780. https://doi.org/10.1016/j.ijmedinf.2024.105780

  22. [22] Harahsheh, K. M., & Chen, C. H. (2023). A survey of using machine learning in IoT security and the challenges faced by researchers. Informatica, 47(6), 1–54. https://doi.org/10.31449/inf.v47i6.4635

  23. [23] Dritsas, E., & Trigka, M. (2025). A survey on cybersecurity in IoT. Future internet, 17(1), 30. https://doi.org/10.3390/fi17010030

  24. [24] Tsouplaki, A., Fung, C., & Kalloniatis, C. (2025). Enhancing IoT privacy with artificial intelligence: Recent advances and future directions. Internet of things, 34, 101752. https://doi.org/10.1016/j.iot.2025.101752

  25. [25] Mazhar, T., Talpur, D. B., Shloul, T. Al, Ghadi, Y. Y., Haq, I., Ullah, I., … & Hamam, H. (2023). Analysis of IoT security challenges and its solutions using artificial intelligence. Brain sciences, 13(4), 683. https://doi.org/10.3390/brainsci13040683

  26. [26] Osamy, W., Khedr, A. M., Salim, A., El-Sawy, A. A., Alreshoodi, M., & Alsukayti, I. (2022). Recent advances and future prospects of using AI solutions for security, fault tolerance, and QoS challenges in WSNs. Electronics, 11(24), 4122. https://doi.org/10.3390/electronics11244122

  27. [27] Sathupadi, K., Achar, S., Bhaskaran, S. V., Faruqui, N., Abdullah-Al-Wadud, M., & Uddin, J. (2024). Edge-cloud synergy for AI-enhanced sensor network data: A real-time predictive maintenance framework. Sensors, 24(24), 7918. https://doi.org/10.3390/s24247918

  28. [28] Sinha, P., Sahu, D., Prakash, S., Rathore, R. S., Dixit, P., Pandey, V. K., & Hunko, I. (2025). An efficient data driven framework for intrusion detection in wireless sensor networks using deep learning. Scientific reports, 15(1), 1–25. https://www.nature.com/articles/s41598-025-12867-x

  29. [29] Hudda, S., & Haribabu, K. (2025). A review on WSN based resource constrained smart IoT systems. Discover internet of things, 5(1), 56. https://doi.org/10.1007/s43926-025-00152-2

  30. [30] Pispa, A., & Halunen, K. (2024). A comprehensive artificial intelligence vulnerability taxonomy. Proceedings of the 23rd european conference on cyber warfare and security, eccws 2024. Academic Conferences International Limited. https://doi.org/10.34190/eccws.23.1.2157

  31. [31] Kadhim, M. R., Lu, G., Shi, Y., Wang, J., & Kui, W. (2025). Lightweight on-edge clustering for wireless AI-driven applications. IET communications, 19(1), e12874. https://doi.org/10.1049/cmu2.12874

Published

2025-06-26

How to Cite

Parandavar, Z., & Pourqasem, J. (2025). An AI-driven adaptive security framework for wireless sensor networks in smart city environments. Smart City Insights, 2(2), 109-118. https://doi.org/10.22105/sci.v2i2.39

Similar Articles

1-10 of 18

You may also start an advanced similarity search for this article.