Designing secure-by-design IoT for smart transportation: A privacy-aware data analytics

Authors

https://doi.org/10.22105/sci.v2i3.41

Abstract

Many cities have adopted smart city initiatives recently and have seen significant improvements in the services they offer to society and the environment. They are equipped to manipulate real-time physical entities and to disseminate smart information to people through smart transportation, healthcare, smart buildings, smart public security, smart parking, intelligent traffic systems, and agriculture. Someone can extract sensitive information from smart city applications. However, user resistance is the most common concern regarding privacy and security. Therefore, while designing and developing the applications, it is also pertinent to understand these security and privacy issues. This paper centers on the critical areas of smart city application and identifies concerns related to an integrative architecture of privacy and security by design. It also evaluates some of the existing approaches to the problems of security and privacy in information technology, which are core to the effective performance of smart city applications. It outlines areas for further research that still require attention to enhance performance.

Keywords:

Smart transportation, Intelligent traffic systems, Smart public security, Integrative architecture, Real-time data

References

  1. [1] Elassy, M., Al-Hattab, M., Takruri, M., & Badawi, S. (2024). Intelligent transportation systems for sustainable smart cities. Transportation engineering, 16, 100252. https://doi.org/10.1016/j.treng.2024.100252

  2. [2] Lv, Z., & Shang, W. (2023). Impacts of intelligent transportation systems on energy conservation and emission reduction of transport systems: A comprehensive review. Green technologies and sustainability, 1(1), 100002. https://doi.org/10.1016/j.grets.2022.100002

  3. [3] Islami, L., Fischer-Hübner, S., & Papadimitratos, P. (2022). Capturing drivers’ privacy preferences for intelligent transportation systems: An intercultural perspective. Computers & security, 123, 102913. https://doi.org/10.1016/j.cose.2022.102913

  4. [4] Micko, K., Papcun, P., & Zolotova, I. (2023). Review of IoT sensor systems used for monitoring the road infrastructure. Sensors, 23(9), 4469. https://doi.org/10.3390/s23094469

  5. [5] Vu, L., Suo, K., Islam, M. R., Dhar, N., Nguyen, T. N., He, S., & Shi, Y. (2024). Living on the electric vehicle and cloud era: A study of cyber vulnerabilities, potential impacts, and possible strategies [presentation]. Proceedings of the 2024 acm southeast conference (pp. 18–26). https://doi.org/10.1145/3603287.3651209

  6. [6] Aslam, M. M., Shafik, W., Hidayatullah, A. F., Kalinaki, K., Gul, H., Zakari, R. Y., & Tufail, A. (2025). Intelligent transportation systems: A critical review of integration of cyber-physical systems (CPS) and Industry 4.0. Digital communications and networks. https://doi.org/10.1016/j.dcan.2025.06.014

  7. [7] Botta, A., De Donato, W., Persico, V., & Pescapé, A. (2016). Integration of cloud computing and internet of things: A survey. Future generation computer systems, 56, 684–700. https://doi.org/10.1016/j.future.2015.09.021

  8. [8] Khazukov, K., Shepelev, V., Karpeta, T., Shabiev, S., Slobodin, I., Charbadze, I., & Alferova, I. (2020). Real-time monitoring of traffic parameters. Journal of big data, 7(1), 84. https://doi.org/10.1186/s40537-020-00358-x

  9. [9] Rammohan, A. (2023). Revolutionizing intelligent transportation systems with cellular vehicle-to-everything (C-V2X) technology: Current trends, use cases, emerging technologies, standardization bodies, industry analytics and future directions. Vehicular communications, 43, 100638. https://doi.org/10.1016/j.vehcom.2023.100638

  10. [10] Mendes, B., Araujo, M., Goes, A., Corujo, D., & Oliveira, A. S. R. (2025). Exploring V2X in 5G networks: A comprehensive survey of location-based services in hybrid scenarios. Vehicular communications, 100878. https://doi.org/10.1016/j.vehcom.2025.100878

  11. [11] Sebestyen, H., Popescu, D. E., & Zmaranda, R. D. (2025). A literature review on security in the internet of things: Identifying and analysing critical categories. Computers, 14(2), 61. https://doi.org/10.3390/computers14020061

  12. [12] Malhotra, P., Singh, Y., Anand, P., Bangotra, D. K., Singh, P. K., & Hong, W. C. (2021). Internet of things: Evolution, concerns and security challenges. Sensors, 21(5), 1809. https://doi.org/10.3390/s21051809

  13. [13] Sun, P., Wan, Y., Wu, Z., Fang, Z., & Li, Q. (2025). A survey on privacy and security issues in IoT-based environments: Technologies, protection measures and future directions. Computers & security, 148, 104097. https://doi.org/10.1016/j.cose.2024.104097

  14. [14] Wu, W., Li, R., Xie, G., An, J., Bai, Y., Zhou, J., & Li, K. (2019). A survey of intrusion detection for in-vehicle networks. IEEE transactions on intelligent transportation systems, 21(3), 919–933. https://doi.org/10.1109/TITS.2019.2908074

  15. [15] Zhang, M., Yang, L., He, S., Li, M., & Zhang, J. (2021). Privacy-preserving data aggregation for mobile crowdsensing with externality: An auction approach. IEEE/ACM transactions on networking, 29(3), 1046–1059. https://doi.org/10.1109/TNET.2021.3056490

  16. [16] Obaidat, M. A., Rawashdeh, M., Alja’afreh, M., Abouali, M., Thakur, K., & Karime, A. (2024). Exploring IoT and blockchain: A comprehensive survey on security, integration strategies, applications and future research directions. Big data and cognitive computing, 8(12), 174. https://doi.org/10.3390/bdcc8120174

  17. [17] Ying, Z., Wang, K., Xiong, J., & Ma, M. (2024). A literature review on V2X communications security: Foundation, solutions, status, and future. IET communications, 18(20), 1683–1715. https://doi.org/10.1049/cmu2.12778

  18. [18] Khraisat, A., Gondal, I., Vamplew, P., & Kamruzzaman, J. (2019). Survey of intrusion detection systems: Techniques, datasets and challenges. Cybersecurity, 2(1), 1–22. https://doi.org/10.1186/s42400-019-0038-7

  19. [19] Pethő, Z., Kazár, T. M., Szalay, Z., & Török, Á. (2024). Quantifying cyber risks: The impact of dos attacks on vehicle safety in V2X networks. IEEE transactions on intelligent transportation systems, 25(11), 18591–18600. https://doi.org/10.1109/TITS.2024.3436840

  20. [20] Sohail, M. S., Portomauro, G., Gaggero, G. B., Patrone, F., & Marchese, M. (2025). Performance analysis and security preservation of DSRC in V2X networks. Electronics, 14(19), 3786. https://doi.org/10.3390/electronics14193786

  21. [21] Fagan, M., Fagan, M., Megas, K. N., Scarfone, K., & Smith, M. (2020). IoT device cybersecurity capability core baseline. https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8259A.pdf

  22. [22] Zhao, C., Gill, J. S., Pisu, P., & Comert, G. (2021). Detection of false data injection attack in connected and automated vehicles via cloud-based sandboxing. IEEE transactions on intelligent transportation systems, 23(7), 9078–9088. https://doi.org/10.1109/TITS.2021.3090361

  23. [23] Yoshizawa, T., Singelée, D., Muehlberg, J. T., Delbruel, S., Taherkordi, A., Hughes, D., & Preneel, B. (2023). A survey of security and privacy issues in v2x communication systems. ACM computing surveys, 55(9), 1–36. https://doi.org/10.1145/3558052

  24. [24] McManus, I., & Heaslip, K. (2022). The impact of cyberattacks on efficient operations of CAVs. Frontiers in future transportation, 3, 792649. https://doi.org/10.3389/ffutr.2022.792649

  25. [25] Yin, L., Wang, Q., Shaw, S. L., Fang, Z., Hu, J., Tao, Y., & Wang, W. (2015). Re-identification risk versus data utility for aggregated mobility research using mobile phone location data. PloS one, 10(10), e0140589. https://doi.org/10.1371/journal.pone.0140589

  26. [26] Temoshok, D., Fenton, J., Choong, Y. Y., Lefkovitz, N., Regenscheid, A., & Richer, J. (2024). Digital identity guidelines: authentication and authenticator management. https://doi.org/10.6028/NIST.SP.800-63B-4

  27. [27] Force, J. T. (2020). Security and privacy controls for information systems and organizations (No. NIST Special Publication (SP) 800-53 Rev. 5 (Withdrawn)). National Institute of Standards and Technology. https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5.pdf

  28. [28] Hussain, F., Hussain, R., Hassan, S. A., & Hossain, E. (2020). Machine learning in IoT security: Current solutions and future challenges. IEEE communications surveys & tutorials, 22(3), 1686–1721. https://doi.org/10.1109/COMST.2020.2986444

  29. [29] Wang, C., Cheng, X., Li, J., He, Y., & Xiao, K. (2021). A survey: Applications of blockchain in the internet of vehicles. EURASIP journal on wireless communications and networking, 2021(1), 77. https://doi.org/10.1186/s13638-021-01958-8

  30. [30] Astarita, V., Giofrè, V. P., Mirabelli, G., & Solina, V. (2019). A review of blockchain-based systems in transportation. Information, 11(1), 21. https://doi.org/10.3390/info11010021

  31. [31] Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., ... & Zhao, S. (2021). Advances and open problems in federated learning. Foundations and trends®in machine learning, 14(1--2), 1–210. https://www.nowpublishers.com/article/Details/MAL-083

  32. [32] Dwork, C., & Roth, A. (2014). The algorithmic foundations of differential privacy. Foundations and trends®in theoretical computer science, 9(3--4), 211–407. https://doi.org/10.1561/0400000042

  33. [33] Cheng, Y., Liu, Y., Chen, T., & Yang, Q. (2020). Federated learning for privacy-preserving AI. Communications of the acm, 63(12), 33–36. https://doi.org/10.1145/3387107

  34. [34] Bormann, C., Ersue, M., & Keranen, A. (2014). Terminology for constrained-node networks. Internet engineering task force (IETF). https://doi.org/10.17487/RFC7228

Published

2025-09-18

How to Cite

Hami Hassan Kiyadeh, S., & Abd El-Wahed Khalifa, H. (2025). Designing secure-by-design IoT for smart transportation: A privacy-aware data analytics. Smart City Insights, 2(3), 125-135. https://doi.org/10.22105/sci.v2i3.41

Similar Articles

11-20 of 24

You may also start an advanced similarity search for this article.