Latency-aware edge computing framework for secure and efficient IoT-driven smart city services

Authors

https://doi.org/10.22105/sci.v2i1.34

Abstract

The integration of edge computing with Internet of Things (IoT) technology revolutionizes smart city services by enabling real-time data processing, decision-making, and action close to data sources. This paradigm shift addresses the limitations of traditional cloud-based models, which suffer from high latency, security risks, and limited bandwidth, especially in densely populated urban areas. Real-time edge computing offers a distributed approach to IoT data management by leveraging localized computing power at the network's edge, reducing the need for data to travel to centralized cloud systems. Edge computing facilitates efficient, responsive services in smart cities where applications like traffic management, environmental monitoring, public safety, and energy optimization demand immediate responses. Processing data locally enables quicker response times, enhances data privacy, and minimizes network congestion. This paper examines the architecture and technologies enabling edge computing in smart city applications and the unique challenges such as interoperability, scalability, and security. Case studies and implementations are explored to illustrate the transformative impact of real-time edge computing on urban infrastructure, contributing to more adaptive, resilient, and intelligent city ecosystems.

Keywords:

Edge computing, Internet of things, Smart cities, Real-time data processing, Cloud limitations, Data privacy, Network congestion

References

  1. [1] Trigka, M., & Dritsas, E. (2025). Edge and cloud computing in smart cities. Future internet, 17(3), 118. https://doi.org/10.3390/fi17030118

  2. [2] Khan, L. U., Yaqoob, I., Tran, N. H., Kazmi, S. M. A., Dang, T. N., & Hong, C. S. (2020). Edge-computing-enabled smart cities: A comprehensive survey. IEEE internet of things journal, 7(10), 10200–10232. https://doi.org/10.1109/JIOT.2020.2987070

  3. [3] Patel, C. M. (2024). Edge computing for low-latency loT applications in smart cities. Smart internet of things, 1(4), 282–288. https://doi.org/10.22105/siot.v1i4.251

  4. [4] Sulieman, N. A., Ricciardi Celsi, L., Li, W., Zomaya, A., & Villari, M. (2022). Edge-oriented computing: A survey on research and use cases. Energies, 15(2), 452. https://doi.org/10.3390/en15020452

  5. [5] Kong, L., Tan, J., Huang, J., Chen, G., Wang, S., Jin, X., … & Das, S. K. (2022). Edge-computing-driven internet of things: A survey. ACM computing surveys, 55(8), 1–41. https://doi.org/10.1145/3555308

  6. [6] Andriulo, F. C., Fiore, M., Mongiello, M., Traversa, E., & Zizzo, V. (2024). Edge computing and cloud computing for internet of things: A review. In Informatics (Vol. 11, No. 4, p. 71). MDPI. https://doi.org/10.3390/informatics11040071

  7. [7] Andriulo, F. C., Fiore, M., Mongiello, M., Traversa, E., & Zizzo, V. (2024, September). Edge computing and cloud computing for internet of things: A review. In Informatics (Vol. 11, No. 4, p. 71). MDPI.

  8. [8] Jararweh, Y., Otoum, S., & Al Ridhawi, I. (2020). Trustworthy and sustainable smart city services at the edge. Sustainable cities and society, 62, 102394. https://doi.org/10.1016/j.scs.2020.102394

  9. [9] Pacheco, M. (2024). Edge computing and IoT: Key benefits & use cases. https://www.tierpoint.com/blog/edge-computing-and-iot/?utm_source=chatgpt.com

  10. [10] Dallaf, A. A. A. (2025). Edge computing in IoT networks: Enhancing efficiency, reducing latency, and improving scalability. International journal of advanced network, monitoring and controls, 10(01), 103–115. https://doi.org/0009-0005-8580-0721

  11. [11] Mao, Y., You, C., Zhang, J., Huang, K., & Letaief, K. B. (2017). A survey on mobile edge computing: The communication perspective. IEEE communications surveys & tutorials, 19(4), 2322–2358. https://doi.org/10.1109/COMST.2017.2745201

  12. [12] Satyanarayanan, M. (2017). The emergence of edge computing. Computer, 50(1), 30–39. https://doi.org/10.1109/MC.2017.9

  13. [13] Yi, S., Li, C., & Li, Q. (2015). A survey of fog computing: Concepts, applications and issues [presentation]. Proceedings of the 2015 workshop on mobile big data (pp. 37–42). https://doi.org/10.1145/2757384.2757397

  14. [14] Chamola, V., Tham, C. K., & Ansari, N. (2020). An optimal delay aware task assignment scheme for wireless SDN networked edge cloudlets. Future generation computer systems, 102, 862–875. https://doi.org/10.1016/j.future.2019.09.003

  15. [15] He, R., Weizhong, M. A., Ma, X., & Liu, Y. (2021). Modeling and optimizing for operation of CO2-EOR project based on machine learning methods and greedy algorithm. Energy reports, 7, 3664–3677. https://doi.org/10.1016/j.egyr.2021.05.067

  16. [16] Tak, A., & Cherkaoui, S. (2020). Federated edge learning: Design issues and challenges. IEEE network, 35(2), 252–258. https://doi.org/10.1109/MNET.011.2000478

  17. [17] Yu, W., Liang, F., He, X., Hatcher, W. G., Lu, C., Lin, J., & Yang, X. (2017). A survey on the edge computing for the internet of things. IEEE access, 6, 6900–6919. https://doi.org/10.1109/ACCESS.2017.2778504

  18. [18] Materwala, H., Ismail, L., Shubair, R. M., & Buyya, R. (2022). Energy-SLA-aware genetic algorithm for edge--cloud integrated computation offloading in vehicular networks. Future generation computer systems, 135, 205–222. https://doi.org/10.1016/j.future.2022.04.009

  19. [19] Baumgartner, T., Klatt, S., & Donath, L. (2023). Revealing the mutual information between body-worn sensors and metabolic cost in running. Sensors, 23(4), 1756. https://doi.org/10.3390/s23041756

  20. [20] Deb, R., & Roy, S. (2022). A comprehensive survey of vulnerability and information security in SDN. Computer networks, 206, 108802. https://doi.org/10.1016/j.comnet.2022.108802

Published

2025-03-28

How to Cite

Mar Cornelio, O., & Cevallos-Torres, L. (2025). Latency-aware edge computing framework for secure and efficient IoT-driven smart city services. Smart City Insights, 2(1), 57-67. https://doi.org/10.22105/sci.v2i1.34